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Introduction
Melanoma accounts for the vast majority of skin cancer–related 
deaths. It is known for its high immunogenicity, which makes the 
disease a suitable target for immunotherapies (1) that deploy the 
patient’s own immune system to fight against tumors (2). Earli-
er immunotherapeutic approaches involved the administration 
of cytokines and interferons, which displayed minimal benefit 
and considerable toxicities. The application of negative immune 
checkpoint molecules such as cytotoxic T lymphocyte–associated 
protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) 
as therapeutic targets has revolutionized cancer immunotherapy. 
Immune checkpoint inhibitors (ICIs) were first administered to 
patients with advanced melanoma and showed promising results 
(3). Yet many patients develop diverse resistance mechanisms that 
decrease the response rate to the treatment (4).

Myeloid-derived suppressor cells (MDSCs) represent a het-
erogeneous population of myeloid cells with immunosuppressive 
functions and are known to be enriched in various types of can-
cer, including melanoma (5–7). The clinical relevance of MDSCs 
has gained attention owing to the reports showing that increased 
levels of MDSCs positively correlated with unfavorable clini-
cal outcome and poor survival in different cancer entities (8, 9). 
Moreover, several reports highlighted a correlation between high 
MDSC numbers and poor response to ICI. This is attributed to the 
ability of MDSCs to foster an immunosuppressive tumor microen-
vironment, which hinders the efficacy of ICIs (10–12).

Current strategies aimed at targeting MDSCs are not entirely 
effective because of the heterogeneity of these myeloid cells and 

the complexity of their immunosuppressive function (7). Ther-
apies that included ICIs in combination with MDSC blockers 
showed potential, yet the absence of definitive markers to iden-
tify MDSCs poses a formidable challenge (13). Although several 
potential MDSC markers and novel factors involved in MDSC 
accumulation, immunosuppressive functions, and recruitment 
have been identified, their clinical utility remains to be elucidated.

In this Review, we present current knowledge on the role of 
MDSCs in the immunotherapy of melanoma. We describe the 
accumulation, infiltration, and immunosuppressive functions of 
MDSCs in the tumor microenvironment (TME) as well as existing 
therapeutic strategies to target them in melanoma-bearing hosts. 
A special focus is placed on preclinical studies and clinical trials 
applying MDSC inhibition to overcome resistance to ICIs. Recent-
ly identified novel markers for MDSC targeting in melanoma are 
also discussed.

Origin and phenotype of MDSCs
MDSCs are immature immunosuppressive myeloid cells or 
mature myeloid cells that acquired immunosuppressive func-
tions (7, 14). These cells accumulate under chronic inflammato-
ry conditions such as cancer, autoimmune diseases, and chronic 
infections (14). Under normal conditions, hematopoietic progen-
itor cells differentiate in the bone marrow into common myeloid 
progenitors that later give rise to immature myeloid cells, termi-
nally differentiating into macrophages, dendritic cells (DCs), and 
granulocytes. Pathological conditions such as cancer lead to the 
dysregulated production of inflammatory signals and hematopoi-
etic growth factors, which can initiate emergency myelopoiesis 
(15, 16). In this condition, the normal differentiation process of 
myeloid cells is impaired by the persistent production of growth 
factors and inflammation signals, resulting in the accumulation of 
immature myeloid cells (17). In contrast to normal counterparts, 
these immature myeloid cells, termed MDSCs, display weak 
phagocytic activity and antiinflammatory and immunosuppres-
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factor (VEGF) make up the first group of signals that stimulate 
myelopoiesis and promote MDSC expansion (26). These medi-
ators stimulate STAT and Janus kinase (JAK) proteins. Tran-
scriptional factors or regulators involved in the accumulation 
of MDSCs include STAT3, STAT4, C/EBP-β, Notch, interferon 
regulatory factor 8 (IRF8), etc. (27). The second group of signals 
includes inflammatory cytokines produced mainly by host cells in 
the TME, such as IL-6, IL-4, IL-1β, and prostaglandin E2 (PGE2). 
Other molecules, like Toll-like receptor (TLR) agonists and dam-
age-associated molecular patterns, including high-mobility group 
box 1 (HMGB1), S100 calcium-binding proteins, tumor-derived 
heat shock proteins (HSPs), and complement component C5a, 
are reported to contribute to MDSC generation (14, 28). Long-
term secretion of these mediators can promote the activation and 
immunosuppressive activity of MDSCs. Furthermore, NF-κB, 
STAT1, and STAT6 transcription factors are also involved in this 
process (6). Secretion of a high level of cytokines including TGF-β, 
IL-1β, IL-10, and TNF-α mediates the acquisition of MDSC immu-
nosuppressive features (29). TNF-α was shown to induce the phos-
phorylation of STAT3, resulting in the differentiation of myeloid 
progenitor cells into MDSCs (29). Sinha et al. (30) demonstrat-
ed that STAT3 induced S100A8/9 proinflammatory proteins, 
which foster the accumulation of MDSCs. Moreover, inhibition 
of S100A8/9 has been shown in various mouse tumor models to 
restrain tumor growth by reducing MDSC accumulation (31–33).

MDSCs are recruited to the TME by chemokines derived from 
both tumor and stroma cells (Figure 1). It has been demonstrat-
ed that chemokines such as CXCL5, CXCL6, CXLC12, CXCL8, 
CXCL1, CCL2, CCL3, CCL4, and CCL5 play an important role 
in MDSC recruitment (34). However, these chemokines are also 
critical for the recruitment of conventional neutrophils and mono-
cytes, indicating the problems associated with specific MDSC 
targeting (35). Additionally, TME-derived hypoxia is one of the 
crucial factors stimulating the recruitment of MDSCs (36–38). 
Hypoxia-inducible factor-1α (HIF-1α) was found to be involved in 
generating M2 macrophages from monocytes inside a tumor (39).

Several studies indicated that MDSC subsets and tumor enti-
ties could determine which chemokines support MDSC migration 
into the tumor site (40). CCR2 signaling was demonstrated to 
mediate M-MDSC recruitment, which promoted suppression of 
CD8+ T cell infiltration into the tumor site in melanoma patients 
(41). The CCR5 ligands CCL3, CCL4, and CCL5 were also report-
ed to play roles in the migration of M-MDSCs (42). On the other 
hand, PMN-MDSCs are recruited primarily by CXC chemokines 
such as CXCL1, CXCL2, CXCL5, CXCL6, and CXCL12 produced 
by tumor cells (43, 44). PMN-MDSCs from melanoma-bearing 
mice were demonstrated to express CXCR2 (45), and CXCR2 
deletion impaired PMN-MDSC accumulation, leading to tumor 
growth inhibition (45, 46).

Immunosuppressive functions
MDSCs use several mechanisms to suppress immune respons-
es mediated by T, B, and natural killer (NK) cells, thus strongly 
accelerating tumor progression. The main mechanisms of T cell 
suppression are dealing with the expression of negative immune 
checkpoint molecules like PD-L1, depletion of amino acids 
required for T cell activation, production of reactive oxygen spe-

sive functions, as well as immature phenotypes and morpholo-
gies (18). Further, it has been demonstrated that mature myeloid 
cells could be converted into MDSCs upon treatment with tumor- 
derived extracellular vesicles (EVs) (19–21). EVs are abundantly 
secreted by cancer cells and contain lipids, proteins, RNAs, and 
microRNAs (miRNAs) (22). It was demonstrated that miRNAs 
promoted MDSC generation, suppressive function, and expan-
sion via targeting of transcription factors including suppressor of 
cytokine signaling (SOCS), CCAAT/enhancer binding protein (C/
EBP), RUNX family transcription factor 1 (RUNX1), signal trans-
ducer and activator of transcription (STAT), and phosphatase and 
tensin homolog (PTEN) (23). EVs derived from human melanoma 
cells were shown to skew monocyte differentiation into immuno-
suppressive cells via a set of miRNAs (miRNA-146a, -155, -125b, 
-100, -125a, -146b, -99b, and let-7e) (21). It was also found that EVs 
secreted by mouse or human melanoma cells can convert normal 
monocytes into immunosuppressive MDSCs via programmed cell 
death protein ligand 1 (PD-L1) upregulation induced by HSP86/
TLR4/NF-κB signaling (20).

MDSCs are categorized into two major subsets, polymor-
phonuclear (PMN-MDSCs) and monocytic (M-MDSCs), based 
on their phenotypic and morphological resemblance to granu-
locytes and monocytes, respectively. In addition, a small subset 
of human myeloid cells comprising more immature progenitors 
are defined as early-stage MDSCs (e-MDSCs) (13). In mice, 
MDSCs are characterized as Gr1+ (Ly6G+ and Ly6C+) CD11b+ 
cells. In mice, PMN-MDSCs are defined as CD11b+Ly6G+ 

Ly6Clo and M-MDSCs as CD11b+Ly6G−Ly6Chi. In humans, PMN- 
MDSCs express CD15, CD33, and CD11b, no CD14, and low or no 
HLA-DR expression, whereas M-MDSCs express CD14, CD33, 
and CD11b with a lack of CD15 and low or no HLA-DR expres-
sion. In addition, e-MDSCs are defined as HLA-DR–CD33+CD14–

CD15– cells (18). Human M-MDSCs could be distinguished from 
monocytes based on the level of HLA-DR expression. In contrast 
to neutrophils, which are purified on a higher density gradient, 
PMN-MDSCs are enriched in the low-density fraction after gra-
dient centrifugation using the Ficoll gradient (18).

Additional markers including lectin-like oxidized low-den-
sity lipoprotein receptor-1 (LOX-1) have been used to distinguish 
human PMN-MDSCs from normal neutrophils (24). Moreover, 
CD84, a member of the signaling lymphocytic activation mol-
ecule (SLAM) family, and JAML, a member of the junctional 
adhesion molecule (JAM) family, have been demonstrated to 
be coexpressed on human MDSCs and to correlate with MDSC 
immunosuppressive activity in breast cancer (25). Despite the 
existence of MDSC markers and their phenotypic definition, the 
identification of MDSCs is still based on the assessment of their 
suppressive activity, since they share multiple genes with conven-
tional neutrophils and monocytes (7).

Accumulation and recruitment of MDSCs
It has been reported that two partially overlapping signals are 
required for MDSC accumulation and activation (Figure 1) (7). 
Tumor cell–derived mediators such as stem cell factor (SCF), 
granulocyte-macrophage colony-stimulating factor (GM-CSF), 
granulocyte colony-stimulating factor (G-CSF), monocyte colo-
ny-stimulating factor (M-CSF), and vascular endothelial growth 
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the expansion of regulatory T cells (Tregs) through the secretion 
of TGF-β and IL-10 (61). Via the expression of the metalloprotease 
ADAM17, M-MDSCs are able to downregulate the expression of 
L-selectin (CD62L) on T cells, which impairs their extravasation 
and tissue infiltration capacity (62). Another mechanism used by 
MDSCs to suppress T cell function is the production of extracel-
lular adenosine from ATP in the hypoxic TME via ectonucleoti-
dases CD39 and CD73 (63, 64). Adenosine was found to impair 
the activation of T cells in cancer by inhibiting their proliferation 
and cytokine production (65).

Besides T cells, MDSCs can inhibit the function of other 
immune cells, such as NK cells, DCs, macrophages, and B cells. For 
instance, TGF-β produced by MDSCs was shown to promote the 
suppression of NK cell functions (66). Crosstalk between MDSCs 
and NK cells results in impaired NK cell cytotoxicity and induction 
of immune tolerance by reducing NKG2D expression and IFN-γ 
production (67). Moreover, PMN-MDSCs were reported to inhib-
it antigen cross-presentation by DCs in tumor-bearing mice (68). 
Furthermore, an accumulation of M-MDSCs in melanoma patients 
blocked DC maturation (6). MDSCs also hinder the function of B 
cells through the production of IL-7 and STAT5 signaling (69), and 
upregulate PD-L1 expression on B cells, thereby leading to the accu-
mulation of regulatory B cells (70). Interaction between MDSCs and 
macrophages leads to the initiation of tumor-promoting immune 
response through upregulation of IL-10 production by MDSCs and 
downregulation of IL-12 secretion by macrophages (71).

cies (ROS) and nitric oxide (NO), and secretion of TGF-β and 
IL-10 (Figure 1) (29). MDSCs were shown to reduce the level of 
several amino acids essential for T cell functions (proliferation 
and cytokine production), such as cysteine, tryptophan, and l-ar-
ginine (47). The upregulation of arginase 1 (ARG1) and inducible 
NO synthase (iNOS) leads to the depletion of l-arginine amounts 
in the TME in different cancer entities (48, 49). Another import-
ant mechanism involved in MDSC immunosuppressive capacity is 
the activation of indoleamine 2,3-dioxygenase (IDO), an enzyme 
that converts l-tryptophan into N-formyl kynurenine (50, 51). The 
deficiency of l-tryptophan results in T cell anergy (51, 52).

A strong production of NO via iNOS activation and ROS by 
MDSCs was found to promote T cell anergy by the downregulation 
of T cell receptor ζ chain expression and even induce T cell apop-
tosis (53–55). Accumulated NO levels were shown to upregulate 
the expression of cyclooxygenase-2 (COX-2), leading to increased 
production of PGE2 (56). The latter molecule was reported to pro-
mote the upregulation of immunosuppressive markers, including 
ARG1, IDO, and IL-10, in in vitro–generated MDSCs (57, 58).

It has been demonstrated that MDSCs express a high level of 
PD-L1, which interacts with PD-1 on T cells, inducing their anergy 
(37). Importantly, tumor-infiltrating MDSCs display higher PD-L1 
expression than circulating MDSCs (59). Although some studies 
demonstrated that PD-L1 expression is predominantly restricted 
to M- and e-MDSCs (13), other publications described the presence 
of PD-L1 also on PMN-MDSCs (45, 60). MDSCs can also induce 

Figure 1. MDSC accumulation, recruitment, and functions in the TME. Inflammatory mediators released by host cells lead to the dysregulation of normal 
myelopoiesis and to the accumulation of MDSCs in the bone marrow. MDSCs expand and migrate to the TME through the interaction between CCR and 
CXCR and their corresponding chemokine ligands. In the TME, MDSCs are activated, and promote immunosuppression and tumor growth via various mech-
anisms. These mechanisms involve inhibiting the functions of T cells, NK cells, and DCs, promoting the differentiation of M2 macrophages, Tregs, and 
Bregs, and inducing angiogenesis and metastasis. Breg, regulatory B cell; CMP, common myeloid progenitor; HSC, hematopoietic stem cell.
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way, including mutations of BRAF (40%–50% of cases), NRAS 
(20%–30% of cases), and NF1 (10%–15% of cases) (85). Selective 
inhibitors of mutant BRAF (dabrafenib, encorafenib, or vemu-
rafenib) are currently used in combination with MEK inhibitors 
(trametinib, binimetinib, or cobimetinib) for the treatment of 
metastatic melanoma (85). Compared with the earlier chemother-
apeutic approaches, lower toxicity and increased overall survival 
have been achieved with BRAF inhibitor treatment (86). Howev-
er, the treatment efficiency of MEK and BRAF inhibitors remains 
low since a significant number of patients acquire resistance 
(87). Studies reported that BRAF and MEK inhibitors could exert 
immunomodulatory effects (88). BRAF inhibition was reported to 
reduce the recruitment of MDSCs in the TME in melanoma-bear-
ing mice (89). Furthermore, MEK inhibition was shown to prevent 
the polarization of monocytes into MDSCs and the infiltration of 
MDSCs into the TME in a mouse melanoma model (90). On the 
other hand, Steinberg et al. (91) reported that in mice with mela-
noma resistant to BRAF inhibitors, MDSC functions were restored 
after initial reduction, indicating the potential role of MDSCs in 
the acquisition of such resistance.

Melanoma has a high mutational burden and shows high 
immune infiltration, which makes it an ideal target for immuno-
therapy (92). Currently, approved immunotherapeutic regimens 
include nivolumab and pembrolizumab to target PD-1, ipilimum-
ab to target CTLA-4, or a combination of antibodies against PD-1 
and CTLA-4 (93). Administration of ICIs displayed initially a high 
response rate and improved clinical outcomes (94, 95). Howev-
er, many patients develop various resistance mechanisms, which 
reduce the response rate to the treatment (4, 96). Resistance to 
ICIs primarily resulted in insufficient generation or dysfunction of 
antitumor effector T cells or inadequate formation of memory T 
cells (97). Since the TME was shown to determine the effective-
ness of ICIs, tumor-infiltrating immune cells represent promising 
targets to improve the effect of ICIs (98). Melanoma cells produce 
various factors that induce the generation and enrichment of 
MDSCs, Tregs, cancer-associated fibroblasts, and tumor-associ-
ated macrophages (99, 100). Among these immunosuppressive 
cell populations, MDSCs are considered to play a major role in the 
immunosuppressive melanoma microenvironment (98, 99).

Chronic inflammation was reported to be associated with mel-
anoma initiation and progression (101). Melanoma cells are able to 
produce various inflammatory mediators, such as GM-CSF, VEGF, 
TGF-β, TNF-α, IL-6, IL-1β, IL-10, and chemokines (CCL2, CCL5, 
CXCL1, CXCL2, CXCL8, CXCL10). They can also induce the pro-
duction of cytokines, chemokines, and growth factors by fibroblasts 
or immune cells, which can further stimulate the chemokine pro-
duction by tumor cells, thereby creating autocrine and paracrine 
loops important for tumor progression (102). Long-term secretion 
of such inflammatory mediators induced MDSC accumulation and 
activation as well as the conversion of normal myeloid cells (like 
monocytes) into immunosuppressive MDSCs (102, 103).

Studies with RET-transgenic mice, which are characterized 
by the spontaneous development of skin malignant melanoma, 
revealed a profound accumulation of several inflammatory fac-
tors in melanoma lesions associated with MDSC enrichment in 
the melanoma microenvironment (104). These MDSCs strongly 
expressed ARG1 and PD-L1, produced high amounts of NOS and 

Metabolic changes in MDSCs have been reported to be asso-
ciated with the acquisition of their suppressive functions. It has 
been described that altered lipid metabolism in MDSCs plays a 
critical role in their differentiation and functions (72). In mice, 
polyunsaturated fatty acid–enriched diets were found to promote 
MDSC generation and to enhance MDSC suppressive activity 
(73). Al-Khami et al. (74) reported that tumor-infiltrating MDSCs 
increased fatty acid uptake and fatty acid oxidation to foster their 
immunosuppressive functions and found that intracellular accu-
mulation of lipids in the TME enhanced the oxidative metabo-
lism and activated immunosuppressive mechanisms of MDSCs 
in a mouse model of Lewis lung carcinoma. It has been recently 
reported that fatty acid transporter protein 2 (FATP2), responsi-
ble for the uptake of arachidonic acid and synthesis of PGE2, is 
involved in the acquisition of PMN-MDSC suppressive activity 
(75). Inhibition of FATP2 was reported to abrogate PMN-MDSC 
functions and potentiate the efficacy of cancer immunotherapy in 
tumor-bearing mice (75). It was also demonstrated that MDSCs 
exhibit resistance to ferroptosis, a programmed cell death induced 
by iron-dependent lipid peroxidation (76). In a mouse model of 
colon cancer, tumor-infiltrating MDSCs were reported to over-
express a key ceramidase, N-acylsphingosine amidohydrolase 2 
(Asah2), which protects MDSCs from ferroptosis. Corresponding-
ly, in this study, inhibition of Asah2 could reduce MDSC accumu-
lation in colon tumors (77).

Furthermore, MDSCs can upregulate glycolytic pathways, 
which support their survival by preventing ROS-mediated apop-
tosis (78). M-MDSCs isolated from tumor tissue of patients with 
hepatocellular carcinoma displayed reduced cellular ATP content 
and failed to utilize glucose, which is mediated by the accumula-
tion of methylglyoxal in MDSCs. By transferring methylglyoxal to 
T cells, MDSCs can suppress their function owing to the depletion 
of cytosolic amino acids such as l-arginine (79).

The TME is characterized by hypoxia, nutrient deprivation, 
acidic pH, and elevated levels of free radicals, which could stim-
ulate the activation of ER stress sensors such as inositol-requiring 
enzyme-1 (IRE1), protein kinase RNA-like endoplasmic reticulum 
kinase (PERK), and activating transcription factor 6 (ATF6) that 
leads to the induction of ER stress in MDSCs (80). As a response to 
ER stress, the expression of C/EBP homologous protein (CHOP) 
is enhanced, resulting in the activation of proapoptotic genes. 
Enhanced CHOP expression in both human and mouse MDSCs 
contributed to their short lifespan and correlated with the ability 
of MDSCs to impair T cell responses (81).

In addition to their immunosuppressive function, MDSCs were 
shown to regulate tumor angiogenesis and vasculogenesis by produc-
ing high levels of matrix metalloproteinase 9 (MMP9) (82). Through 
STAT3 activation, MDSCs can also directly produce angiogenic fac-
tors like VEGF and basic fibroblast growth factor (bFGF) (83).

MDSCs in melanoma
Melanoma originates from the malignant transformation of mela-
nocytes that can be found in different anatomic sites, including 
skin, conjunctiva, mucosal surfaces, and uveal structures (1, 84). 
Malignant melanoma is considered to be the most aggressive and 
fatal form of skin cancer. It results predominantly from oncogen-
ic drivers, leading to constitutive activation of the MAPK path-
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tyrosine kinase inhibitor sunitinib, which blocks several tyrosine 
kinases localized on both MDSCs and tumor cells, was reported to 
reduce MDSC frequencies via blockade of Fms-like tyrosine kinase 
3 (Flt3), c-kit (CD117), and VEGF receptor (VEGFR) in patients 
with renal cell carcinoma (120, 121). Additionally, the TNF-related 
apoptosis-induced ligand receptor 2 (TRAIL-R2) agonistic antibody 
DS-8273a was demonstrated to eliminate MDSCs without affect-
ing mature myeloid cells and to diminish the progression of disease 
among a cohort of patients with advanced malignancies (96). A 
phase I trial also tested the efficacy and safety of DS-8273a in com-
bination with nivolumab in unresectable stage III/IV melanoma 
patients (ClinicalTrials.gov NCT02983006).

Inhibition of MDSC suppressive functions. Disruption of COX-2/ 
PGE2 pathway and phosphodiesterase-5 (PDE5) inhibitors such 
as sildenafil, vardenafil, and tadalafil has been employed to neu-
tralize MDSC immunosuppressive capacities (35). Sildenafil was 
reported to reduce the expression of ARG1 and iNOS in MDSCs, 
and thereby inhibit their immunosuppressive functions (122). Fur-
thermore, Meyer et al. (104) showed that sildenafil prolonged the 
survival of melanoma-bearing mice by reducing MDSC levels and 
activity, leading to restored CD8+ T cell infiltration and function 
in the TME. In an open-label trial with tadalafil, some metastatic 
melanoma patients resistant to ICI showed a response to the treat-
ment that was associated with MDSC inhibition and accumulation 
of activated CD8+ T cells in metastatic lesions (123).

Blocking phosphatidylinositol 3-kinase (PI3K) was report-
ed to reprogram MDSCs from an immunosuppressive to an 
immune-promoting phenotype (82). An ongoing phase I clin-
ical trial with IPI-549, an inhibitor of PI3K, in combination with 
nivolumab is demonstrating improved clinical activity and safety 
in patients with stage III/IV melanoma who showed resistance to 
anti–PD-L1 therapy (NCT02637531).

Inhibiting IDO could be another strategy to block MDSC func-
tions. Clinical trials in patients with advanced solid tumors using  
IDO inhibitors such as epacadostat (124), navoximod (NCT-
02 048709), EOS200271 (125), and BMS-986205 (NCT02658890) 
in combination therapies with ICIs showed that the treatment was 
effective and well tolerated. However, in a phase III trial, the combi-
nation of epacadostat with pembrolizumab in patients with unresect-
able or metastatic melanoma was not successful (NCT02752074). 
A preclinical study using an IDO vaccine to target IDO+ immuno-
suppressive cells in the TME demonstrated a depletion of immu-

ROS, and significantly inhibited T cell functions both in vitro and 
in vivo (104). Similar observations have been demonstrated in 
the peripheral blood of melanoma patients. Elevated numbers of 
M-MDSCs in advanced melanoma patients were found to be asso-
ciated with a high level of inflammatory mediators such as IL-1β 
and IFN-γ, which promotes MDSC accumulation and activation 
(105, 106). Other reports also showed an association between high 
levels of peripheral M-MDSCs and PMN-MDSCs and the tumor 
burden in patients with malignant melanoma (107, 108).

Several lines of evidence have illustrated the role of miRNAs 
in the expansion and activation of MDSCs (23). Huber et al. (21) 
reported that elevated expression of a set of miRNAs was signifi-
cantly correlated with shorter progression-free survival in patients 
undergoing treatment with ipilimumab and nivolumab. Moreover, 
cancer stem cells could recruit MDSCs to regulate immunosup-
pression in the TME. For instance, downregulation of miRNA-92 
expression in CD133+ melanoma stem cells potentiated the accu-
mulation of MDSCs in the tumor site by enhancing integrin- 
dependent activation of TGF-β in melanoma-bearing mice (109).

Targeting MDSCs in melanoma therapy
A number of preclinical and clinical studies have been performed 
to evaluate the efficacy and safety of MDSC inhibition either as a 
single treatment or in combination with other therapies to improve 
antitumor responses and overcome the resistance of cancer cells 
(110–115). Ongoing clinical trials targeting MDSCs in melanoma 
patients are listed in Table 1. Current treatment strategies can be 
classified into five groups: (a) depletion of MDSCs; (b) inhibition 
of their suppressive functions; (c) blocking of their expansion and 
recruitment to the tumor site; (d) promotion of MDSC differentia-
tion into mature myeloid cells; and (e) inhibition of MDSC metab-
olism (Figure 2) (35, 116).

MDSC depletion. Such chemotherapeutics as gemcitabine, 5-flu-
orouracil, paclitaxel, and doxorubicin were demonstrated to signifi-
cantly reduce MDSC frequencies (116). Thus, low-dose paclitaxel 
could decrease the accumulation and immunosuppressive activity 
of tumor-infiltrating MDSCs in melanoma-bearing mice (117) and 
melanoma patients (118), leading to the inhibition of tumor progres-
sion. Moreover, the anti-CD33 monoclonal antibody gemtuzumab 
ozogamicin has recently been reported to deplete MDSCs, restore 
T cell immunity, and improve the efficiency of immunotherapy 
of various tumors, including melanoma (119). Furthermore, the 

Table 1. Clinical trials targeting MDSCs in melanoma

Title Drug Target Strategy Combination partner Phase Trial number
Ipilimumab and All-Trans Retionic Acid Combination Treatment  
of Stage IV Melanoma

ATRA Retionic acid 
receptor

Promotion of MDSC 
differentiation

Ipilimumab II NCT02403778

SX-682 Treatment in Subjects with Metastatic Melanoma 
Concurrently Treated with Pembrolizumab

SX-682 CXCR1/2 Blocking of MDSC recruitment Pembrolizumab I NCT03161431

Combination Therapy with Nivolumab and PD-L1/IDO Peptide 
Vaccine to Patients with Metastatic Melanoma

IO102/IO103 
peptide vaccine

IDO Inhibition of MDSC  
suppressive functions

Nivolumab I/II NCT03047928

A Dose-Escalation Study to Evaluate the Safety, Tolerability, 
Pharmacokinetics, and Pharmacodynamics of IPI-549

IPI-549 PI3K Inhibition of MDSC  
suppressive functions

Nivolumab I NCT02637531

A Study of Avelumab in Combination with Other Cancer 
Immunotherapies in Advanced Malignancies (JAVELIN Medley)

PD-0360324 CSF-1 Blocking of MDSC expansion Avelumab I/II NCT02554812
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nosuppressive myeloid populations and improvement in antitumor 
effects in both IDO-expressing and non-IDO-expressing tumors 
from melanoma-bearing mice (114). Moreover, a phase I/II clinical 
trial in metastatic melanoma patients including an immunomodula-
tory vaccine (IO102/IO103) against IDO and PD-L1 showed a high 
response rate and improved progression-free survival (112).

STAT3 was found to be a promising target to diminish MDSC 
immunosuppressive functions (126). Diverse approaches targeting 
STAT3 inhibition have been evaluated in preclinical models and 
clinical trials (127–129). Nevertheless, clinical implementation in 
advanced solid tumors has yielded limited efficacy or intolerable 

toxicities (130). We demonstrated previously that STAT3 inhibi-
tion by napabucasin reduced the immunosuppressive activity of 
MDSCs and prolonged the survival of melanoma-bearing mice 
(131). Moreover, STAT3 activation in circulating M-MDSCs from 
melanoma patients was found to be correlated with their poor pro-
gression-free survival, indicating the potential role of STAT3 as a 
predictive marker and a therapeutic target in melanoma (131).

The key cytokine IL-1β, produced by inflammasome in response 
to damage-associated or pathogen-associated molecular patterns, 
was reported to be enriched in melanoma patients (132). Tenges-
dal et al. (133) demonstrated that inhibition of tumor-derived 

Figure 2. Potential therapeutic approaches to target MDSCs. The main strategies to target MDSCs include MDSC depletion (A); inhibition of MDSC 
suppressive functions (B); blocking of MDSC expansion and recruitment (C); promotion of MDSC differentiation (D); and inhibition of MDSC metabolism 
(E). Relevant MDSC mechanisms are illustrated in each panel, and examples for each type of therapeutic approach are listed. AA, arachidonic acid; CMP, 
common myeloid progenitor; CPT1, carnitine palmitoyltransferase 1; FAO, fatty acid oxidation; FFAs, free fatty acids; GO, gemtuzumab ozogamicin; HSC, 
hematopoietic stem cell; TKIs, tyrosine kinase inhibitors; TSA, trichostatin A.
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NLR family pyrin domain containing 3 (NLRP3) inflammasome 
by dapansutrile (OLT1177) in combination with ICIs reduced 
MDSC-mediated T cell suppression and thereby decreased tumor 
progression in melanoma-bearing mice.

Blocking MDSC expansion and recruitment. Growth factors 
such as SCF, GM-CSF, CSF, and VEGF are produced by tumor cells 
and could stimulate the expansion of MDSCs (134–136). Inhibit-
ing MDSC development from the bone marrow progenitors by 
blocking SCF was reported to reduce MDSC expansion and tumor 
angiogenesis in a mouse model of colon cancer (137). Moreover, 
the blockade of GM-CSF/G-CSF signaling was reported to restrain 
the accumulation of MDSCs and reinvigorate antitumor immune 
responses (138). Furthermore, when combined with other thera-
pies, CSF-1/CSF-1R blockade was also shown to inhibit MDSC 
expansion (139). A clinical trial with the CSF-1R inhibitor ARRY-
382 in patients with advanced solid tumors including melanoma 
was terminated due to insufficient efficacy (NCT02880371). 
However, a phase I/II clinical trial to test the efficacy and safety 
of CSF-1R inhibitors (PD-0360324) in patients with melanoma is 
still ongoing (NCT02554812).

Blocking the interactions of chemokine receptors with their 
ligands to inhibit MDSC recruitment to the tumor site has been 
implicated as a therapeutic strategy. Anti-CXCR2 therapy was 
shown to reduce the accumulation of PMN-MDSCs in the TME, 
prolong survival, and decrease the occurrence of distant metasta-
ses in melanoma-bearing mice (45). Currently, SX-682, a CXCR1/2 
inhibitor, is being tested in a phase I trial with pembrolizumab in 
patients with metastatic melanoma (NCT03161431).

Histone deacetylases (HDACs) and DNA methyltransferases 
can regulate antitumor immunity (140). HDAC inhibition has been 
shown to reduce MDSC recruitment to the tumor site, reinforce T 
cell activation, and thereby improve antitumor immune respons-
es (141). The HDAC inhibitor entinostat applied in patients with 
metastatic uveal melanoma in combination with pembrolizum-
ab was reported to promote durable antitumor responses (142). 
Moreover, Li et al. (143) reported that low-dose HDAC inhibitor 
trichostatin A in combination with anti–PD-L1 antibodies poten-
tiated antitumor effects of immunotherapies and prolonged the 
survival of melanoma-bearing mice.

A number of reports demonstrated that MDSCs contribute to 
tumor growth by stimulating angiogenesis (83, 144, 145). In par-
ticular, MDSCs increase the proliferation and vasculogenic mim-
icry formation of melanoma cells (146). It has been demonstrated 
that the chemotherapeutic drug doxycycline remarkably reduced 
the ability of MDSCs to stimulate mimicry formation in melano-
ma cells, resulting in a strong antitumor effect when applied in 
combination with anti–PD-1 antibodies in melanoma-bearing 
mice (146). Moreover, anti-VEGF/VEGFR agents tested in clini-
cal trials could reduce the recruitment of MDSCs and inhibit their 
angiogenesis-promoting effects in patients with metastatic non–
small cell lung cancer (NSCLC) and colorectal cancer (147, 148). 
Additionally, a receptor for the proangiogenic factor angiopoietin 
2, TIE-2, was reported to be expressed on circulating M-MDSCs 
from melanoma patients (149). TIE-2+ M-MDSCs overexpressed 
PD-L1, CD73, IL-10, and TGF-β and displayed high immunosup-
pressive activity against melanoma-specific T cells. The authors 
suggested that NGPT2/TIE-2 signaling represents a tumor escape 

mechanism and that the combination of TIE-2 inhibitors and ICIs 
possesses therapeutic potential in melanoma (149).

Sun et al. (150) reported that the level of CXCL10 is greatly 
enhanced under tumor conditions and increased CXCL10 induc-
es the accumulation of peripheral M-MDSCs, ultimately leading 
to tumor growth and metastasis in melanoma-bearing mice. This 
may indicate the importance of potential therapies targeting 
CXCL10 in the TME.

Artemisinin, an antimalarial drug, has been described as a 
promising therapeutic agent for cancer treatment (151). A preclin-
ical study demonstrated that artemisinin therapy inhibited the 
accumulation and immunosuppressive activity of MDSCs, pro-
moted antitumor T cell proliferation, and enhanced the efficacy of 
anti–PD-L1 therapy in melanoma-bearing mice (152).

Promotion of MDSC differentiation. All-trans retinoic acid 
(ATRA) was demonstrated to stimulate the maturation of myeloid 
cells into fully differentiated and less immunosuppressive vari-
ants (153). ATRA-induced differentiation of MDSCs into mature 
myeloid cells has been implicated in many preclinical and clini-
cal studies (153, 154). In particular, a phase I/II clinical trial with 
a combination of ATRA and pembrolizumab revealed a favorable 
tolerability and high response rate in patients with stage IV mela-
noma (NCT02403778) (115).

Inhibition of MDSC metabolism. Another possibility to inhib-
it MDSC-mediated immunosuppression is to interrupt MDSC 
metabolism. In several tumor mouse models, the FATP2 inhibitor 
lipofermata alone or in combination with ICI blocked the activi-
ty of PMN-MDSCs and delayed tumor growth (75). Etomoxir is a 
small-molecule inhibitor of fatty acid oxidation (FAO), blocking 
carnitine palmitoyltransferase 1a (CPT1a), an important transport-
er critical for the oxidation of long-chain fatty acids in mitochon-
dria (155). FAO inhibition by etomoxir was reported to decrease 
tumor growth in different mouse models by limiting MDSC fatty 
acid metabolism (156). Several studies demonstrated the associa-
tion between the CD39/CD73/A2AR signaling pathway and poor 
cancer prognosis (64, 157, 158). An anti-CD73 antibody, oleclumab, 
is being tested together with anti–PD-L1 antibody (durvalumab) 
in various phase II trials in patients with NSCLC (NCT03822351, 
NCT03334617, NCT03794544). Moreover, clinical studies have 
also been performed to evaluate the safety and efficacy of the dual 
inhibition of adenosine receptors A2AR and A2BR (NCT05024097) 
or coinhibition of A2AR and CD73 (159) as a potential strategy to 
inhibit adenosine-mediated immunosuppression.

Itaconate, a tricarboxylic acid cycle–derived metabolite pro-
duced after the activation of immune response gene 1 (IRG1) by 
inflammatory stimuli, was found to be secreted by MDSCs (113, 
160). Zhao et al. (160) demonstrated that itaconate derived from 
MDSCs suppressed CD8+ T cell proliferation and function. Fur-
thermore, a loss of IRG1 diminished tumor growth and potentiat-
ed the efficacy of anti–PD-1 immunotherapy in the murine mela-
noma model, suggesting that IRG1 could be targeted to improve 
response to ICIs.

Novel markers for MDSC targeting in melanoma
Among potential novel surface markers for MDSC identification, 
another lipid transport receptor, CD36, was found to be upregu-
lated in tumor-infiltrating PMN-MDSCs with increased immu-
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current understanding of the mechanisms by which MDSCs could 
support the immunosuppressive melanoma microenvironment, as 
well as the current strategies that aim at MDSC inhibition to enhance 
antitumor immune responses and overcome the resistance to immu-
notherapy. A thorough understanding of the complex interactions 
between MDSCs and tumor cells as well as with other immune cells 
and the identification of novel surface markers that can distinguish 
MDSCs from normal myeloid cells are needed to develop more 
effective melanoma immunotherapies. However, some challenges 
exist in MDSC targeting. Blocking one single mechanism might not 
be sufficient to inhibit MDSC functions, since these cells are able 
to apply various suppression mechanisms simultaneously. There-
fore, new studies are needed to find factors that could target more 
than one mechanism of suppression. Moreover, since MDSCs share 
multiple phenotypic similarities with their normal counterparts, 
many MDSC-targeting compounds suffer from a lack of specificity. 
Refinement of phenotypic definition is needed to modulate MDSCs 
without causing an impact on conventional monocytes and neutro-
phils. The use of high-dimensional single-cell technologies could be 
crucial for reducing the ambiguity by creating a precise definition of 
MDSCs, enabling functional manipulation, and ultimately incorpo-
rating MDSC targeting into clinical practice.
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nosuppressive functions in patients with renal cell carcinoma 
and colon adenocarcinoma (74). The deletion of CD36 or FAO 
inhibition resulted in decreased suppressive functions of MDSCs 
and increased efficacy of immunotherapy associated with delayed 
tumor growth in a mouse model of Lewis lung carcinoma (74).

General control nonderepressible 2 (GCN2), a serine-threonine 
kinase controlling transcription and translation in response to nutri-
ent availability (161), was found to be a critical driver for the genera-
tion of tumor-associated macrophages and MDSCs in tumor-bearing 
hosts (162). Depletion of GCN2 decreased MDSC immunosuppres-
sive functions and reduced IFN-γ expression in intratumoral CD8+ 
T cells in a mouse melanoma model (162). Increased GCN2 activity 
was also found to be correlated with a decreased overall survival in 
melanoma patients (162).

Another potential MDSC marker, immunoglobulin-like tran-
script 3 (ILT3), was found to play an important role in the acquisi-
tion of their immunosuppressive activity (163). MDSCs generated 
via melanoma cell lines were found to express high levels of ILT3, 
and ILT3 inhibition reduced the capacity of MDSCs to suppress 
T cells (164). Moreover, the ILT3hi fraction of PMN-MDSCs were 
shown to be correlated with poor outcome in NSCLC patients 
(165), indicating that blocking of ILT3 may increase the antitumor 
responses by inhibiting MDSC functions.

Conclusion and future perspectives
ICI therapies have led to a significant improvement in the treat-
ment of metastatic melanoma over the past decade. However, this 
improvement is not sufficient, and resistance develops over time due 
to a profound immunosuppression in the TME. MDSCs are strongly 
enriched in the melanoma microenvironment and employ several 
mechanisms to inhibit antitumor effector functions of T and NK cells 
(103). To enhance cancer immunotherapy, it is critically important to 
reprogram the unresponsive T cells in the TME to reinvigorate their 
antitumor functions (2). In this context, we have summarized the 
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