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Nutrient overload induces obesity, a primary risk factor for type 2 diabetes. Ribosomal biogenesis and protein synthesis,
which are controlled by the mammalian target of rapamycin (mTOR), are primary energy-consuming processes in cells.
mTOR phosphorylates and inactivates members of the eukaryotic translation initiation factor 4E–binding (eIF4E-binding)
protein (4E-BP) family, which are translational repressors of 5′ cap–dependent protein synthesis. In this issue of the JCI,
Le Bacquer et al. report that simultaneous deletion of both 4E-BP1 and 4E-BP2 in mice results in insulin resistance,
decreased energy expenditure, and increased adipogenesis (see the related article beginning on page 387). These
findings link protein synthesis, insulin sensitivity, and body weight.
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Food (energy) shortage is a constant threat 
to the survival of a species. Individuals who 
can efficiently maintain their body weight 
via energy conservation have an increased 

chance of survival and propagation during 
times when food supply is limited. Nutri-
ents and hormones activate multiple evo-
lutionarily conserved signaling pathways 
that govern the balance between energy 
intake and expenditure. Mammalian target 
of rapamycin (mTOR) is a well-conserved 
serine/threonine protein kinase that func-
tions as an intracellular nutrient sensor to 
control protein synthesis, cell growth, and 
metabolism. In this issue of the JCI, Le Bac-
quer et al. demonstrate that the eukaryotic 
translation initiation factor 4E–binding 
(eIF4E-binding) protein (4E-BP) family of 

translational repressors, which are physi-
ologic substrates of mTOR, play a key role 
in regulating body weight and glucose 
homeostasis in mice (1).

mTOR regulation of energy and 
glucose metabolism
mTOR is a member of the phosphoinositide 
kinase–related kinase family and is activat-
ed by nutrients (e.g., branched-chain amino 
acids) as well as by metabolic hormones, 
growth factors, and cytokines. mTOR binds 
to other regulatory components to form 2 
distinct multiprotein complexes. The first 
complex, mTORC1, contains mTOR, regu-
lator-associated protein of mTOR (Rap-
tor), and G protein β subunit–like protein 
(GβL). The second complex, mTORC2, 
contains mTOR, rapamycin-insensitive 
companion of mTOR (Rictor), mammalian 
stress–activated protein kinase–interacting 
protein 1 (mSin1), and GβL (Figure 1). The 
adaptor proteins Raptor and Rictor deter-
mine the substrate specificity of mTORC1 
and mTORC2, respectively. mTORC1 spe-
cifically phosphorylates ribosomal protein 
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S6 kinase (S6K) and 4E-BP in a rapamycin-
sensitive manner. In contrast, mTORC2 
phosphorylates Akt at Ser473, promoting 
Akt activation.

Thomas and colleagues have demon-
strated that genetic deletion of S6K1, a 
physiologic substrate of mTORC1, results 
in profound metabolic defects in periph-
eral tissues (2–4). mTORC1 is required for 
adipocyte differentiation in vitro (5, 6). 
mTORC1 activity is significantly elevated 
in the livers, muscle, and adipose tissue of 
both genetically induced and diet-induced 
obese animals, suggesting the involvement 
of the peripheral mTORC1 pathway in the 
pathogenesis of obesity and obesity-associ-
ated metabolic disorders (4, 7). Cota, Seeley, 

and colleagues have demonstrated that the 
central mTORC1 pathway integrates various 
metabolic signals (both nutrients and hor-
mones), thereby globally regulating energy 
homeostasis and body weight (8). They have 
shown that amino acids selectively activate 
the mTORC1 pathway in a subpopulation 
of hypothalamic neurons that control ener-
gy homeostasis, resulting in the inhibition 
of both energy intake and body weight gain 
(8). Conversely, inhibition of mTORC1 by 
rapamycin blocks amino acid– and leptin-
induced inhibition of energy intake and 
weight gain (8). Therefore, both the periph-
eral and the central mTORC1 pathways are 
required for maintaining normal energy and 
glucose metabolism.

S6K1 regulation of energy and 
glucose metabolism
mTORC1 phosphorylates S6K1 at Thr389, 
allowing the phosphoinositide-dependent 
protein kinase 1 (PDK1) to bind to and 
phosphorylate S6K1 at Thr229, thus fully 
activating S6K1 (9–11). S6K1 promotes pro-
tein synthesis and cell growth presumably 
by phosphorylating multiple substrates, 
including components of translation ini-
tiation and/or elongation machinery (e.g., 
ribosomal protein S6, eIF4B, and eukary-
otic elongation factor 2 kinase). In animals, 
disruption of the S6K1 gene reduces the 
size of pancreatic β cells, resulting in insu-
lin insufficiency and glucose intolerance 
(2). Moreover, S6K1 phosphorylates insu-

Figure 1
A model of the regulation of body weight and insulin sensitivity by mTOR, S6K1, and 4E-BP. Nutrients and hormones stimulate the association 
of mTORC1 with eIF3. mTORC1 phosphorylates eIF3-associated S6K1 at Thr389. Phosphorylated S6K1 is dissociated from eIF3 and subse-
quently phosphorylated and activated by PDK1. S6K1 phosphorylates eIF4B, increasing the ability of eIF4B to enhance eIF4A helicase activity. 
S6K1 phosphorylates IRS-1, inhibiting insulin signaling. S6K1 phosphorylates mTOR, which may decrease the abundance of mTORC2 and/or 
the ability of mTORC2 to phosphorylate Akt at Ser473, contributing to insulin resistance. A separate pool of mTORC1 may phosphorylate 4E-BP 
at multiple sites, resulting in dissociation of eIF4E from 4E-BP. 4E-BP–free eIF4E binds to eIF4G that is associated with both eIF4A and eIF3. 
eIF3 binds to the 40S ribosomal subunit and recruits the 40S subunit to the 5′ cap. eIF4A, assisted by eIF4B, unwinds the secondary structure 
in the mRNA 5′ UTR, facilitating the assembly of a translation initiation complex. The data reported in this issue by Le Bacquer et al. (1) suggest 
that reduced expression of 4E-BP increases the pool of mTORC1 that phosphorylates and activates S6K1. These data also raise the possibility 
that genetic modifiers and nutrients may modify the ability of 4E-BPs to repress the translation of key regulators of energy conservation and 
combustion programs, thereby regulating adiposity and body weight, which indirectly modulate insulin sensitivity. GβL, G protein β subunit–like 
protein; m7GpppN, the 5′ cap structure; mSin1, mammalian stress-activated protein kinase interacting protein 1; Raptor, regulator-associated 
protein of mTOR; Rictor, rapamycin-insensitive companion of mTOR.
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lin receptor substrate 1 (IRS-1) at inhibi-
tory serine/threonine residues, inhibiting 
insulin signaling (Figure 1). S6K1-deficient 
mice have enhanced insulin sensitivity (4). 
Interestingly, S6K1-deficient mice are pro-
tected from high-fat diet–induced obesity 
because of increased energy expenditure 
(4). Consistently, mitochondrial size and 
content increase in white adipocytes and 
skeletal muscle in S6K1-deficient mice. The 
expression of key molecules in fuel com-
bustion, including uncoupling protein 1 
(UCP1), UCP3, carnitine palmitoyltransfer-
ase 1, and PPARγ coactivator 1α (PGC1α), 
is also increased in S6K1-deficient mice 
(4). Exactly how S6K1 regulates the pro-
gram that controls energy combustion has 
remained unclear.

4E-BP–mediated regulation of 
energy and glucose metabolism
The mammalian 4E-BP family has 3 mem-
bers, 4E-BP1, 4E-BP2, and 4E-BP3, which 
repress protein translation by binding and 
inhibiting eIF4E (Figure 1). eIF4E directly 
binds to the mRNA 5′ cap structure that is 
present in most eukaryotic mRNAs. eIF4E 
also binds to eIF4G, a scaffold protein that 
is associated with both eIF3 and eIF4A. eIF3 
interacts with the 40S ribosomal subunit, 
whereas eIF4A, an ATP-dependent mRNA 
helicase, unwinds the secondary structure 
in the mRNA 5′ untranslated region (5′ 
UTR) to facilitate the binding of the 40S 
ribosomal subunit to the 5′ cap. Hypo-
phosphorylated 4E-BPs binds with high 
affinity to eIF4E at sites overlapping with 
eIF4G, thereby inhibiting eIF4G binding 
and the assembly of a translation initia-
tion complex at the mRNA 5′ cap structure. 
mTORC1-induced hyperphosphorylation 
of 4E-BPs inhibits 4E-BP binding to eIF4E, 
which allows free eIF4E to bind to eIF4G 
and assemble a translation initiation com-
plex at the mRNA 5′ cap, promoting 5′ cap–
dependent protein synthesis (Figure 1).

To determine the physiologic functions 
of 4E-BP1 and 4E-BP2, Le Bacquer et al. (1) 
simultaneously deleted the genes coding for 
4E-BP1 and 4E-BP2 in mice and examined 
the metabolic consequences. 4E-BP1 and 
4E-BP2 double knockout (DKO) mice had 
a significant increase in both body weight 
and fat content. The obese phenotype was 
caused by reduced energy expenditure and 
reduced lipolysis. Not surprisingly, a high-
fat diet promoted insulin resistance to a 
greater degree in obese DKO mice than in 
WT mice. The metabolic phenotype is the 
opposite of that described for S6K1-defi-

cient mice. Importantly, both embryonic 
fibroblasts and preadipocytes from DKO 
mice had an increased ability to differenti-
ate into adipocytes in vitro; the expression 
of CCAAT/enchancer-binding protein d 
(C/EBPδ), C/EBPα, and PPARγ — essential 
regulators for adipogenesis — was markedly 
increased in these cells in the DKO animals 
during differentiation. These observations 
suggest that 4E-BP1 and 4E-BP2 may inhib-
it adipocyte differentiation in a cell-autono-
mous fashion.

Interestingly, the authors demonstrated 
that S6K1 activation was significantly 
enhanced in multiple tissues in DKO mice 
(1). These findings suggest that not only 
do the parallel 4E-BP and S6K1 signal-
ing pathways downstream of mTORC1 
act coordinately in promoting transla-
tion, but that crosstalk exists between the 
2 pathways, by which each pathway can 
modulate the activation of the other. Holz, 
Blenis, and colleagues have demonstrated 
that S6K1 binds to eIF3 under basal condi-
tions (12). Insulin or amino acids promote 
mTORC1 binding to eIF3 and phosphory-
lation of S6K1 at Thr389 by eIF3-associ-
ated mTORC1 (Figure 1). This induces 
dissociation of S6K1 from eIF3, allowing 
PDK1 to bind to, phosphorylate, and acti-
vate S6K1 (12). Because eIF3 is associated 
with eIF4G, and eIF4G and 4E-BPs bind 
to eIF4E in a mutually exclusive manner, 
4E-BPs may be unable to associate with 
eIF3 and be phosphorylated by eIF3-asso-
ciated mTORC1. Therefore, 4E-BPs and 
S6K1 may be phosphorylated by 2 distinct 
pools of mTORC1, and the elimination of 
4E-BPs may shift the balance of these 2 
pools toward eIF3-associated mTORC1, 
resulting in increased activation of S6K1 
in DKO mice (Figure 1). S6K1 induces 
insulin resistance, presumably by phos-
phorylation of IRS-1 at inhibitory serine/
threonine residues and degradation and 
transcriptional inhibition of IRS proteins 
in DKO mice. S6K1 also phosphorylates 
mTOR at multiple sites (13). This begs the 
question: Does S6K1-mediated phosphor-
ylation modulate the ability of mTOR to 
assemble mTORC1 and mTORC2 and/or 
the ability of mTORC2 to phosphorylate 
and activate Akt?

Surprisingly, in Drosophila, the 4E-BP 
equivalent, d4E-BP, acts as a metabolic 
brake during stress by inhibiting the burn-
ing of energy (14). Consistent with this 
finding, Tsukiyama-Kohara, Sonenberg, 
and colleagues have previously examined 
4E-BP1–deficient mice and reported that 

genetic deletion of 4E-BP1 protects against 
high-fat diet–induced obesity and insu-
lin resistance because of increased energy 
expenditure (15). How can we reconcile 
these opposing metabolic phenotypes 
described in the current study and previ-
ous studies of 4E-BP1–deficient mice? Le 
Bacquer et al. (1) attribute the discrepancy 
to the differential expression of modi-
fier genes, because the separate studies use  
4E-BP1–deficient mice with 2 different 
genetic backgrounds (BALB/c 129SvJ1 in 
the earlier study versus BALB/c in the cur-
rent study). Based on these assumptions, 
4E-BPs may repress the translation of key 
regulators that direct the programs of 
either energy conservation or energy com-
bustion; a combination of genetic modi-
fiers and environmental factors, especially 
nutrients, may determine the ability of 
4E-BPs to repress energy conservation or 
combustion programs (Figure 1). The 5′ 
cap structure and 5′ UTR of the mRNAs 
of these key regulators may control their 
translational efficiency in a 4E-BP– and/or 
S6K1-dependent manner.

Because the activation of hypothalamic 
mTORC1 suppresses energy intake (8), it 
is surprising that deletion of neither S6K1 
nor 4E-BP1 or 4E-BP2 alone is reported to 
alter food intake. Future studies may iden-
tify mTORC1 targets in the hypothalamus 
that crosstalk with other pathways (e.g., 
the JAK2/STAT3 and AMP kinase path-
ways) to mediate nutrient and/or hor-
monal regulation of energy homeostasis 
and body weight.
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