Supplements

Figure S1.

(A) Src kinase activity is necessary for recruitment of Crk to Nephrin cytoplasmic domain. Human podocytes expressing CD16/7-NephrinCD (CD16NCD) were treated with solvent control (DMSO), Src kinase inhibitor PP2 or inactive control compound (PP3) before clustering with anti-CD16 antibody (1°) and secondary antimouse IgG antibody (Texas Red). Crk-myc was stained with anti-myc antibody and Alexa Fluor 488-labeled secondary IgG antibody. Colocalization was analyzed by confocal microscopy. YZ planes were reconstructed on the far right. Magnification: 630 X. (B) Clustered, activated CD16/7-NephrinCD induces lamellipodia formation in cultured human podocytes. CD16/7-NephrinCD was expressed in human podocytes and was activated as descibed above. Lamellipodia were visualized by staining actin with fluorophorecoupled phalloidin (green). Arrows indicate lamellipodia. Magnification: 630 X.

В

	CD16	Phalloidin Alexa488	Merge
CD16NCD 1° & 2° Ab	*		A A A A A A A A A A A A A A A A A A A
CD16NCD 1° & 2° Ab			
CD16NCD 2° Ab only			
CD16NCD 2° Ab only			

Figure S2.

Cas is recruited to Nephrin in a Src and pl-3 kinase dependent manner. (A) Human podocytes expressing CD16/7-NephrinCD and Cas-GFP were treated with solvent control (DMSO), Src kinase inhibitor PP2 or pl-3 kinase inhibitor LY294002 and activated as described above. (B) Podocytes expressing CD16/7-NephrinCD or indicated mutants (red) and Cas-GFP (green) were activated and co-localization was evaluating by confocal microscopy. YZ planes are reconstructed on the far right. Magnification: 630 X.

	CD16	Cas-GFP	werge	
CD16NCDY1,2,3F 1° & 2° Ab				
CD16NCDY6,9F 1° & 2° Ab		·		A Comparison of the second sec
CD16NCDY7,9F 1° & 2° Ab				A DESCRIPTION OF A DESC
CD16NCDY5,7,10F 1° & 2° Ab				

Figure S3.

Phosphorylation of Cas in Nephrin clusters depends on pl-3 kinase and Nephrin tyr residues Y5, 7, 10 (A) Human podocytes expressing CD16/7-NephrinCD were treated with DMSO (solvent control), Src kinase inhibitor PP2, inactive control compound PP3 or pl-3 kinase inhibitor LY294002 prior to clustering and p-Cas was stained with anti-p-Cas and secondary IgG antibody (Alexa Fluor 488). (B) Podocytes expressing CD16/7-NephrinCD mutants as indicated were stained and activated as in (A) and analyzed by confocal microscopy. YZ plane reconstructions are shown on the far right. Magnification: 630 X.

Figure S4.

Nephrin and Crk exhibit interaction affinity in vitro. (A) Purified recombinant GST-NephrinCD (GST-NCD) or indicated tyrosine residue mutants were expressed in BL21 or TKB1 *E.coli*. As shown, expression of these recombinant proteins in TKB1 cells results in Nephrin tyrosine phosphorylation. Indicated proteins were incubated with purified recombinant His-Crk2 and pulled down using glutathione agarose. (B) GST-Crk overlay. Nephrin oligopeptides were synthesized with and without phosphorylated tyrosine residues as indicated and arrayed on a nylon membrane. These membranes were incubated with purified recombinant full-length GST-Crk2, or fragments containing only the Crk2 SH2 or SH3 domain. The overlay was assayed with anti-GST antibody conjugated with horseradish peroxidase (HRP).

Figure S5.

Phosphorylated focal adhesion kinase (FAK) is present in activated Nephrin clusters in the CD16/7-NephrinCD model and at the podocyte precursor intercellular junction in newborn mouse. (A) Human podocytes expressing CD16/7-NephrinCD were treated with solvent control (DMSO), Src kinase inhibitor PP2, inactive control compound or pl-3 kinase inhibitor prior to clustering with anti-CD16 antibody (1°) and Texas Red conjugated secondary IgG antibody. Endogenous p-FAK was stained with phospho-FAK antibody and detected with Alexa Fluor 488 conjugated antibody (green). Co-localization was evaluated by confocal microscopy. (B) Indirect immunofluorescence: Paraffin-embedded mouse newborn kidney sections (4 µm) were stained with p-FAK or ZO-1 antibody showing that p-FAK is targeted to the podocyte precursor intercellular junction starting at the late capillary loop stage. Magnification: 630 X.

Figure S6.

Phosphorylation of FAK in Nephrin clusters requires pl-3 kinase and Nephrin tyr residues Y5, 7, 10. Podocytes expressing CD16/7-NephrinCD or mutants as indicated were activated as previously described (red) and p-FAK was detected by indirect immunofluorescence (green). Co-localization of p-FAK and Nephrin was analyzed by confocal microscopy. Magnification: 630 X.

Figure S7.

Nck1/2 is not necessary for Crk recruitment to CD16/7-NephrinCD. Nck wild type (Nck1/2^{+/+}) or Nck1 and Nck2 double null MEF (Nck1/2^{-/-}) were transfected with plasmid encoding CD16/7-NephrinCD and Crk-GFP and cells were activated as described above. Note that Nephrin and Crk co-localize in Nck1/2 double null MEF (merged images on the right). Magnification: 630 X.

Supplementary Table 1

Human Crk shRNA sequences.

	Sequence
Crk shRNA1	CCGGCCTCTTTGACTTTAATGGGAACTCGAGTTCCCATT AAAGTCAAAGAGGTTTTT
Crk shRNA2	CCGGCATCTTG AGAATCCGGGACAACTCGAGTTGTCCCGGATTCTCAAGATGTTTTT
Crk shRNA3	CCGGGCTTTACTGGAATTCTACAAACTCGAGTTTGTAGAATTCC AGTAAAGCTTTTT
Crk shRNA4	CCGGCGCCTCAGTATCGGCT CTGATCTCGAGATCAGAGCCGATACTGAGGCGTTTTT
Crk shRNA5	CCGGGCGAGCCCTCTTTGACTTTAACTCGAGTTAAAGTCAAAGAG GGCTCGCTTTTT

Supplementary Table 2

Supplementary Table 2 displays sequences of arrayed oligopeptides used in the overlay experiment shown in Supplementary Figure 4B.

Y#	Tyrosine#	Sequence
Y1	Y1128	DRIRNEYEESQWT
pY1	pY1128	DRIRNE pY EESQWT
Y2	Y1153	AEVDPHYYSMRDFS
pY2	pY1153	AEVDPH pY YSMRDFS
pY3	pY1154	AEVDPHY pY SMRDFS
Y2,3F	Y1153,1154F	AEVDPH FF SMRDFS
Y4	Y1172	TLEEVSYRQAFTG
pY4	pY1172	TLEEVS pY RQAFTG
Y5	Y1191	AFPGHLYDEVERV
pY5	pY1191	AFPGHL pY DEVERV
Y6	Y1198	DEVERV Y GPPGVW
pY6	pY1198	DEVERV pY GPPGVW
Y7	Y1208	PGVWGPLYDEVQMDP
pY7	pY1208	PGVWGPL pY DEVQMDP
Y8	Y1216	EVQMDPYDLRWPE
pY8	pY1216	EVQMDP pY DLRWPE
Y9	Y1225	RWPEVKYEDPRGI
pY9	pY1225	RWPEVK pY EDPRGI
Y10	Y1232	EDPRGI Y DQVAAD
pY10	pY1232	EDPRG pY DQVAAD