Selection bias at the heterosexual HIV-1 transmission bottleneck

JM Carlson, M Schaefer, DC Monaco, R Batorsky… - Science, 2014 - science.org
JM Carlson, M Schaefer, DC Monaco, R Batorsky, DT Claiborne, J Prince, MJ Deymier
Science, 2014science.org
Introduction Heterosexual HIV-1 transmission is an inefficient process with rates reported at<
1% per unprotected sexual exposure. When transmission occurs, systemic infection is
typically established by a single genetic variant, taken from the swarm of genetically distinct
viruses circulating in the donor. Whether that founder virus represents a chance event or
was systematically favored is unclear. Our work has tested a central hypothesis that founder
virus selection is biased toward certain genetic characteristics. Fitter viruses (red) are …
Introduction
Heterosexual HIV-1 transmission is an inefficient process with rates reported at <1% per unprotected sexual exposure. When transmission occurs, systemic infection is typically established by a single genetic variant, taken from the swarm of genetically distinct viruses circulating in the donor. Whether that founder virus represents a chance event or was systematically favored is unclear. Our work has tested a central hypothesis that founder virus selection is biased toward certain genetic characteristics.
Fitter viruses (red) are favored more in woman-to-man (bottom curve) than in man-to-woman (top curve) transmission. The probability that a majority donor amino acid variant is transmitted is a function of relative fitness, here estimated by the frequency of the variant in the Zambian population. Even residues common in the population are less likely to be transmitted to healthy men than to women, indicative of higher selection bias in woman-to-man transmission.
Rationale
If HIV-1 transmission involves selection for viruses with certain favorable characteristics, then such advantages should emerge as statistical biases when viewed across many viral loci in many transmitting partners. We therefore identified 137 Zambian heterosexual transmission pairs, for whom plasma samples were available for both the donor and recipient partner soon after transmission, and compared the viral sequences obtained from each partner to identify features that predicted whether the majority amino acid observed at any particular position in the donor was transmitted. We focused attention on two features: viral genetic characteristics that correlate with viral fitness, and clinical factors that influence transmission. Statistical modeling indicates that the former will be favored for transmission, while the latter will nullify this relative advantage.
Results
We observed a highly significant selection bias that favors the transmission of amino acids associated with increased fitness. These features included the frequency of the amino acid in the study cohort, the relative advantage of the amino acid with respect to the stability of the protein, and features related to immune escape and compensation. This selection bias was reduced in couples with high risk of transmission. In particular, significantly less selection bias was observed in men with genital inflammation and in women (regardless of inflammation status), compared to healthy men, suggesting a more permissive environment in the female than male genital tract. Consistent with this observation, viruses transmitted to women were characterized by lower predicted fitness than those in men. The presence of amino acids favored during transmission predicted which individual virus within a donor was transmitted to their partner, while chronically infected individuals with viral populations characterized by a predominance of these amino acids were more likely to transmit to their partners.
Conclusion
These data highlight the clear selection biases that benefit fitter viruses during transmission in the context of a stochastic process. That such biases exist, and are tempered by certain risk factors, suggests that transmission is frequently characterized by many abortive transmission events in which some target cells are nonproductively infected. Moreover, for efficient transmission, some changes that favored survival in the transmitting partner are frequently discarded, resulting in overall slower evolution of HIV-1 in the population. Paradoxically, by increasing the selection bias at the transmission bottleneck, reduction of susceptibility may increase the expected fitness of breakthrough viruses that establish infection and may therefore worsen the …
AAAS