Mechanics of receptor-mediated endocytosis

H Gao, W Shi, LB Freund - Proceedings of the National …, 2005 - National Acad Sciences
H Gao, W Shi, LB Freund
Proceedings of the National Academy of Sciences, 2005National Acad Sciences
Most viruses and bioparticles endocytosed by cells have characteristic sizes in the range of
tens to hundreds of nanometers. The process of viruses entering and leaving animal cells is
mediated by the binding interaction between ligand molecules on the viral capid and their
receptor molecules on the cell membrane. How does the size of a bioparticle affect receptor-
mediated endocytosis? Here, we study how a cell membrane containing diffusive mobile
receptors wraps around a ligand-coated cylindrical or spherical particle. It is shown that …
Most viruses and bioparticles endocytosed by cells have characteristic sizes in the range of tens to hundreds of nanometers. The process of viruses entering and leaving animal cells is mediated by the binding interaction between ligand molecules on the viral capid and their receptor molecules on the cell membrane. How does the size of a bioparticle affect receptor-mediated endocytosis? Here, we study how a cell membrane containing diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle. It is shown that particles in the size range of tens to hundreds of nanometers can enter or exit cells via wrapping even in the absence of clathrin or caveolin coats, and an optimal particles size exists for the smallest wrapping time. This model can also be extended to include the effect of clathrin coat. The results seem to show broad agreement with experimental observations.
National Acad Sciences